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Abstract
A variational approach based on a functional of the polarization charge density
at interfaces between different dielectric bodies is used to calculate the energy
of electrostatic interaction between two electric charges embedded in either two
spherical dielectric cavities or in one spheroidal cavity. An effective, distance-
dependent dielectric function is extracted from these results, which is exact
within the macroscopic theory of dielectrics. We show that different dielectric
functions must be associated with pairs of equally or oppositely charged ions
and with pairs of ions in cavities of the same or differing radii.

1. Introduction

Electric polarization effects at the interfaces between bodies of different dielectric permittivities
play a very important role in understanding many molecular mechanisms on nanometric
scales, such as the solvation of highly charged biomolecules [1–3] and the permeation of ions
through channels across membranes [4]. A variational approach to the solution of Poisson’s
equation with appropriate boundary conditions was recently put forward [5]; this variational
formulation is particularly efficient when the dielectric interface is assumed to be sharp, since
the polarization charge is then restricted to the surface separating two dielectric media. The
method was tested against exact results for simple geometries [5],and applied to the permeation
of ion channels [4].

In this paper the same density functional formulation is applied to the problem of the
effective interaction between two ions of equal or opposite charges, trapped inside dielectric
cavities. The first situation which will be considered is that of two separate spheres of
permittivity ε placed in a dielectric medium of permittivity ε′, each containing an ion.
This simple model may be relevant for globular proteins in aqueous solution containing
charged residues buried within them, or for ions trapped inside water-in-oil microemulsions or
inside micelles. One objective is to determine rigorously, within macroscopic electrostatics,
a ‘distance-dependent’ effective dielectric function which reproduces the total interaction
between the two charges. The model is then extended by considering the situation where
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the two spherical cavities coalesce into a single spheroidal cavity, with conservation of the
total volume of the two initial cavities. A problem similar to the latter was already addressed
by Westheimer and Kirkwood [6] in a somewhat different context.

The paper is organized as follows. The electrostatic functional of the polarization charge
density is briefly recalled in section 2, and various analytical and numerical strategies for
solving the variational problem are examined. The case of charges inside separate spherical
dielectric cavities is considered in section 3, while the effective interaction between two charges
within the same spheroidal cavity is determined in section 4. A discussion and concluding
remarks are contained in section 5.

2. Variational formulation

Electrostatic problems in which distinct regions of space have different dielectric permittivities,
with sharp boundaries between them, are a common feature of coarse-grained models of
physical systems, including theories of solvation of macromolecules [1–3] and a recent
simplified model of an ion channel through a membrane [4]. The electrostatic potential ψ(r)

of any system containing polarizable bodies may be described in terms of an ‘external’ part
ψe(r), due to the ions and other fixed charges in the system, and an ‘induced’ part ψi (r), which
results from the polarization of the system in response to ψe(r). The induced potential ψi (r)

may be regarded as being caused by a ‘polarization charge density’ ρpol(r), which is related
to the potential and the dielectric susceptibility χ(r) = ε(r) − 1, by [7]

ρpol(r) = ε0∇ · [χ(r) ∇ψ(r)]. (1)

In the particular case of systems with sharp dielectric interfaces, ρpol(r) exists only at
the boundaries between regions of differing dielectric permittivities, apart from a trivial part
located at the positions of the external charges rq, ρtr iv = q(1/ε − 1)δ(r − rq), which simply
has the effect of screening the potential of the point charges by a factor 1/ε, where ε is the
permittivity of the medium containing the external charges. One may thus describe the total
potential of the system by specifying a surface polarization charge density h(s) = ρpol(s)/ε0.

A variational method for solving such problems was introduced in a previous paper [5].
This consists of a functional I [h(s)], defined on the surface separating the dielectric bodies in
the system, the minimization of which, with respect to h(s), leads to the correct electrostatic
solution. I [h] is given by

I [h] = − (κ − 1)

2

∫
S

d2s
∫

S
d2s′ h(s′)

∂G(s − s′)
∂n

[
ψe(s) +

∫
S

d2s′′ h(s′′)G(s − s′′)
]

+
(κ + 1)

4

∫
S

d2s
∫

S
d2s′ h(s)h(s′)G(s − s′)

+
(κ − 1)

4

∫
S

d2s ψe(s)h(s) − (κ − 1)

2

∫
S

d2s
∫

S
d2s′ h(s′)G(s − s′)

∂ψe(s)

∂n
(2)

where κ = ε′/ε, (ε′ referring to the region not containing the fixed charges), G(r − r′) =
1/(4π |r − r′|) is the Green function for an infinite system, and ∂

∂n indicates a derivative in the
direction of the normal to the dielectric interface, pointing from region (ε) to region (ε′).

I [h] was derived in [5] in the particular case where ε = 1, i.e. the fixed charges were
situated in vacuum. However, it may be generalized to cases where ε �= 1 by using the
definition of κ given above and defining the potential of the fixed charges, ψe, as

ψe(r) =
N∑

i=1

qi

εε0
G(|r − ri |). (3)
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Figure 1. (a) The geometry of the dielectric problem involving two charges (q1, q2) embedded
in spherical bodies of radii (R1, R2) and dielectric permittivity ε, surrounded by a dielectric
continuum ε′. (b) A vector diagram showing point r = (R1, θ1, φ1) on sphere 1 and point
r′ = (r ′, θ ′, φ′) on sphere 2, where r′ = rb − ra , with rb = (rb, θb, φb) = (d, π, φb) and
ra = (ra , θa , φa) = (R2, θ2, φ2).

This variational method was previously applied to several problems in simple geometries,
for which I [h] could be minimized both analytically, via an expansion in suitable orthogonal
basis functions, and numerically on a surface grid [5]. When solving numerically in this way,
it is necessary to make approximations to deal with the divergence of G(r − r′) at grid points
where r = r′. This forms the major source of error in numerical calculations involving large
peaks in h(s), for example where there are two very closely spaced dielectric boundaries or a
very large dielectric discontinuity.

The numerical method has recently been applied in a molecular dynamics simulation of a
simple model of a channel through a membrane [4].

Two different electrostatic problems are treated in this work: that of two dielectric spheres,
each containing a point charge, and that of two point charges contained within a dielectric
spheroid. The latter problem is solved by an expansion of h(s) in orthogonal basis functions,
followed by an analytical minimization of I [h]. However, there is no such set of orthogonal
basis functions suitable for the former situation. After an initial approach using grids defined
on the two spheres, a numerical method was devised based on a separate expansion of h(s)

on each sphere, which eliminates the approximations required for the grid-based method.
The method is tested against an analytical solution in bispherical coordinates, obtained for a
particular configuration of the point charges within the spheres.

3. Charges inside separate dielectric spheres

We first consider two charges, q1 and q2, placed a distance d apart and contained within
spherical dielectric bodies of permittivity ε, surrounded by a medium of permittivity ε′, as
shown in figure 1(a). The spheres have radii R1 and R2 and the charges may be displaced from
the centres of the spheres by distances �1 and �2.

The potential energy of interaction, Vint , between the two spheres may be defined as the
total energy of the system at distance d , less the polarization energy of each sphere due to its
own point charge, measured when the spheres are infinitely far apart (see equation (16)).

At very large d , the spheres do not interact and each one has a surface polarization charge
density induced simply by the point charge within that sphere (note that when � = 0 this takes
the form of a uniform surface charge). In this large-d limit, Vint is expected to be of the form
Vint (d) = q1q2/(4πε′ε0d). As d decreases, however, each point charge is able to polarize
the other sphere as well as its own, leading to a correlation between the polarization surface
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charge densities on the two spheres. The interaction energy may be cast into the same form if
an ‘effective dielectric function’, εe f f (d), is defined such that

Vint (d) = q1q2

4πεef f ε0d
. (4)

The function εef f (d) includes all polarization interactions between the two spheres. If more
than two spherical cavities are present, the electrostatic interaction energy is not expected to
be pairwise additive, but three-and more-body interactions come into play. However, a sum of
pairwise terms of the form (4) may provide a good first approximation to the total electrostatic
interaction energy, at least for dilute dispersions of spherical bodies. An investigation along
these lines is under way.

3.1. Variational method

The problem posed above may be solved numerically using the variational functional (2)
without the need for a grid spanning the dielectric interface. We define coordinates (ρ1, θ1, φ1),
centred at z = −d/2, and (ρ2, θ2, φ2), centred at z = +d/2, as shown in figure 1(a). In view
of the cylindrical symmetry around the z-axis, the total induced polarization surface charge
density is then expanded in Legendre polynomials on the two spherical surfaces:

h(s) = h1(s1) + h2(s2) =
∞∑

l=0

[Al Pl(cos θ1) + Bl Pl(cos θ2)]. (5)

The aim is to find the expansion coefficients Al and Bl .
The Green function between two position vectors r and r′ is given in spherical polar

coordinates by [7]

G(r − r′) =
∞∑

l=0

1

(2l + 1)

ρl
<

ρl+1
>

l∑
m=−l

Y ∗
lm(θ, φ)Ylm(θ ′, φ′) (6)

where Ylm(θ, φ) and Ylm(θ ′, φ′) are spherical harmonics having the same origin, and ρ< and
ρ> are the smaller and larger of the two radial components, |r| and |r′|.

The case where r and r′ lie on different spheres is illustrated in figure 1(b). The vectors
r′, ra , and rb, where r′ = ra −rb, as shown in figure 1(b), are related in spherical coordinates
by [8]

1

r ′l+1
Ylm(θ ′, φ′) =

√
4π

(2l)!

∞∑
λ=0

(−1)l+λ

√
(2(l + λ))!

(2λ + 1)!

rλ
a

r l+λ+1
b

×
λ∑

µ=−λ

〈λ(l + λ)µ(m + µ)|lm〉Yλµ(θa, φa)Yl+λ,m+µ(θb, φb) (7)

where 〈λ(l + λ)µ(m + µ)|lm〉 is a Clebsch–Gordan coefficient [9].
Since rb is the vector between the centres of the two spheres, ρb = d , θb = π , and

Yl+λ,m+µ(θb, φb) = (−1)(l+λ)( 2(l+λ)+1
4π

)1/2δm+µ,0. The Green function between points r on the
surface of sphere 1 and r′ on the surface of sphere 2, as shown in figure 1(b), may therefore
be written as

G(r − r′) =
∞∑

l=0

1

(2l + 1)
Rl

1

l∑
m=−l

Y ∗
lm(θ1, φ1)

×
√

1

(2l)!

∞∑
λ=0

√
(2(l + λ) + 1)!

(2λ + 1)!

Rλ
2

dl+λ+1
〈λ(l + λ) − m0|lm〉Yλ−m(θ2, φ2). (8)
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The external potential on the dielectric boundary is also expanded in Legendre
polynomials:

ψe(s) = ψ(1)
e (s1) + ψ(2)

e (s2) = 1

4πεε0

∞∑
l=0

[(1)

l Pl(cos θ1) + 
(2)

l Pl(cos θ2)] (9)

where 
(1)
l = q1�

l
1/Rl+1

1 +q2 Rl
1/(d +�2)

l+1 and 
(2)
l = q2�

l
2/Rl+1

2 +q1 Rl
2(−1)l/(d −�1)

l+1.
The derivative of the external potential, ∂ψe/∂n = ∂ψe/∂ R, is given by

∂ψe(s)

∂n
= 1

4πεε0

∞∑
l=0

[�(1)
l Pl(cos θ1) + �

(2)
l Pl(cos θ2)] (10)

where �
(1)
l = −(l + 1)q1�

l
1/Rl+2

1 + lq2 Rl−1
1 /(d + �2)

l+1 and �
(2)
l = −(l + 1)q2�

l
2/Rl+2

2 +
lq1 Rl−1

2 (−1)l/(d − �1)
l+1.

Substituting (5)–(9) into the functional (2), using the orthogonality relations for spherical
harmonics [7] as well as the fact that [9]

〈λ(l + λ)00|l0〉 = (−1)2l+λ(2l + 1)1/2

(
(2λ)!(2l)!

(2(l + λ) + 1)!

)1/2
(l + λ)!

l!λ!
(11)

the following expression for the functional I [h] is obtained:

I [h] = − (κ − 1)

4
[2I (1) + 2I (2) + 2I (3) + I (4)] +

(κ + 1)

4
I (5) (12)

where I (1) to I (5) are given by

I (1) = R2
1 R2

2

ε

∞∑
l=0

∞∑
n=0

(−1)n(n + l)!Rl
1 Rn

2

n!l!(2n + 1)(2l + 1)dl+n+1

[
Al

(2)
l

R2
+

Bl
(1)
l

R1

]

− 1

2ε

∞∑
l=0

[R2
1 A1

(1)
l + R2

2 Bl
(2)
l ]

(2l + 1)2
(13a)

I (2) = R2
1 R2

2

ε

∞∑
l=0

∞∑
n=0

(−1)n Rl
1 Rn

2 (l + n)!

n!l!(2l + 1)(2n + 1)dl+n+1
[Al�

(2)
n + �

(1)
l Bn]

+
1

ε

∞∑
l=0

[R3
1 Al�

(1)

l + R3
2 Bl�

(2)

l ]

(2l + 1)2
(13b)

I (3) = −2π

∞∑
l=0

[R3
1 A2

l + R3
2 B2

l ]

(2l + 1)3

+ 2π R2
1 R2

2

∞∑
l=0

∞∑
n=0

Al Bn Rl
1 Rn

2 (−1)n(n + l)!

n!l!(2n + 1)(2l + 1)dl+n+1

[
2n − 1

2n + 1
+

2l − 1

2l + 1

]

+ 4π R3
1 R3

2

∞∑
l=0

∞∑
n=0

∞∑
p=0

× p(l + p)!(n + p)![Al An Rl+n
1 R2p−1

2 + (−1)l+n Bl Bn Rl+n
2 R2p−1

1 ]

(2l + 1)(2n + 1)(2 p + 1)l!n!(p!)2d2p+l+n+2
(13c)

I (4) = 1

ε

∞∑
l=0

[R2
1 Al

(1)
l + R2

2 Bl
(2)
l ]

(2l + 1)
(13d)

I (5) = 8π R2
1 R2

2

∞∑
l=0

∞∑
n=0

(−1)n Al Bn(n + l)!Rl Rn

(2l + 1)(2n + 1)n!l!dl+n+1
+ 4π

∞∑
l=0

[R3
1 A2

l + R3
2 B2

l ]

(2l + 1)2
. (13e)
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The expansion (5) of the induced polarization surface charge density h(s) is truncated
at a finite number N of coefficients; we find N = 15 sufficient for convergence. Powell’s
method [10] is then used to perform a numerical minimization with respect to the coefficients
An and Bn.

Once An and Bn are obtained, the polarization energy Vpol is calculated using the
relation [7]

Vpol = 1

2

∫
d2s εψe(s)ρpol(s) = 1

2

∞∑
l=0

[R2
1

(1)

l Al + R2
2

(2)

l Bl]

(2l + 1)
. (14)

The total energy Vtot is given by

Vtot = q1q2

4πεε0(d − �1 + �2)
+ Vpol. (15)

Note that the factor of ε in (14) is included because of the particular definition of ψe in (3): the
polarization surface charge interacts with the bare, unscreened, point charges. Interactions of
the trivial part of the induced charge, ρtr iv , with the opposite point charge are included in the
first part of Vtot .

The interaction energy was defined above to be

Vint (d) = Vtot (d) − Vpol|d→∞. (16)

The polarization energy is known exactly in the limit of isolated spheres:

Vpol |d→∞(�1,�2) = (ε − ε′)
8πεε0

∞∑
l=0

1

εl + ε′(l + 1)

(
q1�

2l
1

R2l+1
1

+
q2�

2l
2

R2l+1
2

)
. (17)

When �1 = �2 = 0 this expression simplifies to (ε−ε′)
8πε0εε

′
( q1

R1
+ q2

R2

)
.

We note that this minimization scheme may easily be generalized to the case where there
are more than two spheres.

3.2. Testing against an exact solution in bispherical coordinates

The numerical solution obtained by the method illustrated in section 3.1 can be tested against
an analytic solution to the problem in the particular geometry where R1 = R2 = R; �1 =
−�2 = �, obtained within the bispherical coordinate system (µ, η, φ) [11]. In this coordinate
system, the φ-variable has the same meaning as in cylindrical coordinates, and will not concern
us here, since our problem is azimuthally symmetric. A surface of constant µ = µ0 forms
a sphere of radius R = |a/sinh µ0| with its centre positioned at z = a coth µ0. Positions on
the surface of this sphere are described by the η-coordinate. When µ → ±∞, two points are
obtained on the z-axis, at z = ±a.

Bispherical coordinates are well suited to the problem of two point charges (q1, q2)
located at z = (−a, +a), surrounded by dielectric spheres (here taken to be of equal
radius, for simplicity) given by µ = (−µ0, +µ0), centred at z = (−d/2, +d/2) =
(−a coth µ0, +a coth µ0), as illustrated in figure 2. The detailed solution is given in appendix A.
The result of the calculation is an induced charge density on the surface of the two spheres, of
the form

h(1)(η) = (cosh µ0 − cos η)1/2
∑

n

Zn Pn(cos η) (18)

h(2)(η) = (cosh µ0 − cos η)1/2
∑

n

Wn Pn(cos η) (19)

where the coefficients Zn and Wn are given in equations (A.16) and (A.17).
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2a coth

’

ε
−µ

q1
q2

µ

ε

ε

µ

2a

region 1

region 2
region 3

z

0
0

Figure 2. The geometry adopted for the exact solution in bispherical coordinates. The two spheres
have radius R = |a/sinh µ0|, the charges q1 and q2 are positioned at z = ∓a = ∓(d − �), and
the centres of the spheres are at z = ±a coth µ0 = ±d/2.

0 1
θ

1

0.50

0.75

1.00

1.25

1.50

h(
θ 1)/

h un

Figure 3. Induced polarization charge density as a function of angle θ1 (in radians, as defined
in figure 1(a)), relative to the value hun for d → ∞ and � = 0, hun = q

4π R2ε0
( 1

ε′ − 1
ε
). Here,

R1 = R2 = R, d/R = 3, q1 = q2, ε = 80, ε′ = 1. The point charges are positioned as described
in figure 2 and section 3.2. The solid curve shows the results obtained from the calculation in
bispherical coordinates and the circles show the numerical minimization results.

The calculation is performed for specified values of d and R, as in figure 1(a), setting
the parameters a and µ0 via a2 = (d2/4) − R2 and sinh2 µ0 + 1 = d2/(4R2). The
numerical minimization described in section 3.1 is then carried out for the same geometry,
with � = d

2 [1 − (1 − 4R2/d2)1/2]. The resulting induced polarization charge density is
compared to the analytical result, for ε = 80, ε′ = 1, and d/R = 3 in figure 3. The results of
the analytical and numerical methods are seen to agree perfectly.

3.3. Results

Having verified the accuracy of the variational procedure outlined in section 3.1 for solving
problems in this geometry, we now apply it to physically relevant situations. These fall into
two classes: those in which the material inside the spheres is the more polarizable (ε > ε′),
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Figure 4. Induced polarization surface charge density on sphere 1 as a function of angle θ1 (as
defined in figure 1(a)), relative to that of the isolated sphere, h1,un = q1

4π R2ε0
( 1

ε′ − 1
ε
). (a) ε = 80,

ε′ = 1, q1 = q2; (b) ε = 1, ε′ = 80, q1 = q2; (c) ε = 80, ε′ = 1, q1 = −q2; and (d) ε = 1,
ε′ = 80, q1 = −q2. Results are shown for three different values of d. Note that the induced charge
density is of the same sign as q1 in (a) and (c) and of the opposite sign in (b) and (d). Identical
plots are obtained for sphere 2, but with θ2 = π − θ1.

and those in which it is the less polarizable medium (ε < ε′). The former case could be
used to model ions trapped inside water droplets or reverse micelles, surrounded by oil, or
inside polarizable pockets within an apolar macromolecule. Here we set ε = 80, representing
water, and ε′ = 1. In the latter case the model might represent charged residues buried within
protein molecules, surrounded by solvent. Here we use ε = 1 and ε′ = 80. As noted in [1],
it is important to consider both the case of like charges q1 = q2, and that of unlike charges
q1 = −q2.

3.3.1. Charges at sphere centres. We first position the point charges at the centres of spheres
of equal radius R(�1 = �2 = 0), and vary their separation d . At very large d , the isolated
sphere limit is expected to be recovered, in which a sphere containing a point charge q has a
uniform h(s) given by hun = q

4π R2ε0

(
1
ε′ − 1

ε

)
. Figure 4 shows that the induced polarization

charge density on the two spheres becomes correlated as d is reduced.
When ε > ε′ ((a) and (c)), the polarization charge on the sphere surface is of the same sign

as the point charge within that sphere. In this case, as d decreases, when q1 = q2 (a), due to
repulsion between the like-charged induced charge densities on the two spheres, h(s) becomes
depleted in the region where the surfaces are close together (small θ1, large θ2). However,
when q1 = −q2 (c), the induced charge densities are of opposite signs and h(s) accumulates
in this region.
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When ε < ε′ ((b) and (d)), the polarization charge is of the opposite sign to the charge
within the sphere. If q1 = q2 (b), then once again h(s) is depleted where the spheres are closest
(at small θ2), whereas it accumulates when q1 = −q2 (d). Correlation effects between the
polarization charge densities are far weaker when the medium of high permittivity is outside
the spheres than when it is inside.

The function εef f (d), defined in equation (4), is plotted in figure 5 for ε > ε′, ε < ε′,
q1 = q2, and q1 = −q2. At large d , εef f approaches ε′. The behaviour of εef f (d) in the four
cases can be understood in the context of the correlated polarization surface charge density
shown in figure 4. When ε > ε′ and q1 = q2 (a), each point charge is repelled not only by
the other charge itself, but also by its like-charged polarization surface charge density, h(s).
As d decreases, h(s) is depleted in the region between the spheres. This has the effect of
reducing the repulsion between the charges, causing εe f f to increase. Putting ε < ε′ and
keeping q1 = q2 (b), the point charges still experience a bare repulsive interaction, but now
the potential due to interaction with h(s) (which now has the opposite charge) is attractive.
As d decreases, h(s) is depleted between the spheres, the interaction energy becomes more
repulsive, and εef f decreases. Turning to the situation shown in (c), where q1 = −q2 and
ε > ε′, each point charge is now attracted to the part of h(s) situated on the other sphere. As
d decreases, h(s) accumulates as shown in figure 4 and the attractive potential between the
charges is increased, leading to a lower εe f f . Finally, when q1 = −q2, and ε < ε′, as shown
in (d), each point charge is repelled by the component of h(s) on the opposing sphere. h(s)

accumulates between the spheres as d decreases, thereby reducing the attraction between the
charges and causing εef f to increase.

3.3.2. Charges displaced from centre. In a true physical situation, charged objects are
sometimes free to move within their containing dielectric bodies. We therefore investigated
the effect on the total energy of varying the parameter �1 = −�2 = � (see figure 1), which
measures the position of the point charges relative to the centres of the spheres. In the limit
d → ∞, where the spheres are independent, the energy, given by (17), is nevertheless �-
dependent. When ε > ε′, the energy is minimized when the point charge is positioned at the
sphere centre, but when ε < ε′, a location at the sphere boundary is favoured. In the latter
case, where, as was noted earlier, interaction effects between the spheres are far weaker, this
situation does not change on reducing the separation d . However, in the case when ε > ε′,
setting as before ε = 80 and ε′ = 1 and firstly taking q1 = q2, the minimum in the total energy
as a function of � is shifted from � = 0 as d → ∞ to � = −0.02 at d = 10R to � = −0.20
at d = 2.5R. When q1 = −q2, the minimum shifts in the other direction, to � = 0.02 at
d = 10R to � = 0.31 at d = 2.5R. Thus it is favourable for oppositely charged objects
to move towards each other within their polarized surrounding bodies, but for those with the
same charge to move away from each other, as the bodies approach one another.

3.3.3. Spheres of different sizes. In this section, we recognize that interacting dielectric bodies
containing point charges are not necessarily of equal sizes. Ion-containing water droplets
suspended in oil, for instance, are unlikely to be all identical in radius. We therefore investigate
the effects on the interaction potential between the charges when one sphere is allowed to be
larger than the other.

Figure 6 shows the effect on εef f (d) when R2 = 2R1 and when R2 = 4R1. It is clear that
the correlation between the induced polarization surface charge densities on the two spheres
is strongly influenced by the difference in their curvature. Figure 7 shows h(θ)/hun for the
two spheres, for ε = 80, ε′ = 1, q1 = q2, and R2 = 2R1. As d decreases, the like-
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Figure 5. εe f f (d) in the four cases (a) ε = 80, ε′ = 1, q1 = q2; (b) ε = 1, ε′ = 80, q1 = q2;
(c) ε = 80, ε′ = 1, q1 = −q2; and (d) ε = 1, ε′ = 80, q1 = −q2.

charged polarization surface charge becomes depleted in the region between the spheres, as in
figure 4(a). Moreover, a new effect is present here which is not seen when R1 = R2. When
the spheres are very close together, h(θ) becomes so depleted on the sphere 2 that it actually
changes sign. This reverses its effect on the charge density on sphere 1, which begins to
accumulate in this region. This strong correlation between the two spheres is responsible for
the dramatic behaviour of εef f (d) seen in figure 6.

4. Charges inside a dielectric spheroid

When two dielectric bodies containing charges come very close to one another, they frequently
coalesce, creating a single body which contains both charges. This scenario is modelled here
by a spheroid with two point charges at its foci, as shown in figure 8.

4.1. Solution in prolate spheroidal coordinates

Using the prolate spheroidal coordinate system [11], an analytical solution of the electrostatic
problem is possible. This may be done by the standard method of expanding the electrostatic
potential in suitable basis functions and applying the necessary boundary conditions at the
dielectric interface [6]. Alternatively, one may expand the induced charge density h(s),
the Green function G(s − s′), and the external potential ψe(s) in suitable orthogonal basis
functions, leading to an expression for the functional I [h] which is easily minimized to yield
the expansion coefficients for h(s).
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Figure 6. εe f f (d) for R2 = R1, R2 = 2R1, and R2 = 4R1, in the four cases (a)–(d), labelled as in
figures 4 and 5. Note that the scale on the y-axis is logarithmic.

Figure 7. Induced polarization charge density on sphere 1 (a), and on sphere 2 (b), relative to its
value on the same sphere as d → ∞. R1 = 2R2, ε = 80, ε′ = 1, and q1 = q2. Results are shown
for three different values of d.

In prolate spheroidal coordinates (ζ, η, φ), the surfaces ζ = ζ0 are prolate spheroids with
major axis aζ/2 and foci at z = ±a/2. The φ-coordinate is the azimuthal angle. Positions
on the surface of the spheroid are described in terms of η, where z = aηζ/2. The solution, as
described in appendix B, leads to a series expansion of h(s):

h(η) =
∞∑

n=0

Cn
Pn(η)√

(ζ 2
0 − η2)

(20)
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Figure 8. An illustration of the geometry of the problem in prolate spheroidal coordinates.

where the coefficients Cn , determined by minimization of the functional I [h], are given in
equation (B.8).

The polarization energy is given by expression (B.9). From this, the total energy is
obtained using (15). For the problem of two charges inside separate spheres, the interaction
energy was defined in (16), subtracting from the total energy the polarization energy at large
sphere separation. However, in the present geometry, such a subtraction is not appropriate and
we define the corresponding effective dielectric function Ee f f (d) by

Vtot (d) = q1q2

4πEe f f ε0d
. (21)

In performing these calculations, it is necessary to choose an appropriate size of spheroid
for each value of d . We have here taken the dielectric medium containing the point charges to
be incompressible, and maintained the total volume of the spheroid at the same value as that
of two isolated spheres of radius R. This amounts to calculating the parameter ζ0 from the
relation

πa3ζ0

6
(ζ 2

0 − 1) = 8π R3

3
. (22)

The value of a is set by the distance between the point charges, a = d .

4.2. Results

The effective dielectric function Ee f f (d) is plotted in figure 9 for ε > ε′, ε < ε′, q1 = q2,
and q1 = −q2. In all cases, when the two point charges are very close, d → 0, the second
part of equation (15) dominates and Eef f → ε. For larger values of d , the polarization of the
surrounding spheroid comes into play. The relative influence of E pol increases with d , since
the charges move apart from each other but become closer to the dielectric boundary. If ε > ε′,
each point charge induces polarization charge of the same sign on the surface closest to it,giving
a repulsive polarization energy, E pol . When q1 = q2 (a), E pol adds to the repulsive second term
in (15), causing Eef f to decrease as d increases. When q1 = −q2 (c), E pol opposes the attractive
second term in (15), reducing the effective attraction between the charges. Thus Eef f increases.
At d/R ≈ 1.25, the two terms in (15) exactly cancel, giving Etot = 0 and a divergence in Ee f f .
When d/R > 1.25, the polarization term dominates and Ee f f is negative. On the other hand,
if ε < ε′, each point charge induces polarization charge around it of opposite sign, leading
to a negative E pol . Thus the attractive second term in (15) when q1 = q2 is opposed and
eventually overcome by E pol , causing Ee f f to increase, diverge and become negative in (b).
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Figure 9. Eef f (d), as defined in (21), for the four cases (a)–(d), labelled as in figures 4–6.

However, when q1 = −q2, the effect of the negative E pol is to reinforce the negative second
term, decreasing Ee f f (d). Divergences in effective dielectric functions were also observed
by Ehrenson [12] in a different context. This seemingly unphysical behaviour may in fact be
traced back to the somewhat arbitrary definition of a bulk-like dielectric constant in confined
geometries.

5. Conclusions

Phenomenological, distance-dependent dielectric functions are frequently employed in
continuum descriptions of solvents near interfaces. A much studied biophysical application
is that of the solvation of macromolecules such as proteins and DNA [13]; however, the form
of the distance dependence of the dielectric function is mostly ad hoc. In the present paper
we have investigated the possibility of defining a distance-dependent dielectric constant ε(d)

from a purely macroscopic point of view, based on the classical theory of dielectrics and the
assumption of infinitely sharp interfaces.

The analytical and numerical results show that ε(d) is meaningful in the case of charges
embedded inside non-intersecting spheres. A very significant increase or decrease of ε(d)

relative to its asymptotic value ε′ is found for spheres close to contact (d � 2R), depending
on the relative sign of the two charges and the relative values of the dielectric constants inside
and outside the spheres. The most important conclusion is that different effective dielectric
constants must be defined for interactions between equal and opposite charges. The increase
or reduction of ε(d) relative to ε′ for small d is considerably enhanced when the embedding
spheres have different radii.
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Very different results are found when the two charges are embedded within the same
spheroidal cavity, but the concept of a distance-dependent dielectric function is less clear
in that case; our variational method gives similar results to earlier work by Westheimer and
Kirkwood [6] using different methods. The present approach is being generalized to the case of
three spherical bodies, to investigate the importance of three-body interactions, and to charges
interacting through a dielectric slab representing a membrane.
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Appendix A. Solution of the two-sphere problem in bispherical coordinates

Using the bispherical coordinate system (µ, η, φ) [11], the external potential due to point
charges q1, situated on the z-axis at z = −a, and q2 at z = +a, is given by

ψe = 1

4
√

2πεε0a

√
(cosh µ − cos η)(q1e−µ/2 + q2eµ/2). (A.1)

The total electrostatic potential is given in the three regions 1, 2, and 3, as shown in
figure 2, by

ψ1 = ψe +
∑

n

An

√
(cosh µ − cos η)e(n+ 1

2 )µ Pn(cos η)

ψ2 = ψe +
∑

n

√
(cosh µ − cos η)[Bne(n+ 1

2 )µ + Cne−(n+ 1
2 )µ]Pn(cos η)

ψ3 = ψe +
∑

n

Dn

√
(cosh µ − cos η)e−(n+ 1

2 )µ Pn(cos η)

(A.2)

where the coefficients An , Bn , Cn , and Dn are to be determined.
The component of the electric field E = −∇ψ , in the eµ-direction, can be shown to be

Eµ = − (cosh µ − cos η)

a

∂ψ

∂µ
. (A.3)

The boundary conditions on the electrostatic potential at the dielectric interfaces, µ = µ0

and µ = −µ0, are

ψ1|−µ0 = ψ2|−µ0; ε
∂ψ1

∂µ

∣∣∣∣−µ0

= ε′ ∂ψ2

∂µ

∣∣∣∣−µ0

;

ψ3|µ0 = ψ2|µ0; ε
∂ψ3

∂µ

∣∣∣∣
µ0

= ε′ ∂ψ2

∂µ

∣∣∣∣
µ0

.

(A.4)

Applying (A.4) to (A.2), using the recursion relations for Legendre polynomials [14], and
equating coefficients of Pn(cos η), one obtains a set of coupled equations for the coefficients:

An = Bn + Cne(2n+1)µ0 (A.5)

Dn = Cn + Bne(2n+1)µ0 (A.6)

εAn(αneµ0 + γne−µ0) − εγn−1 An−1 − εαn+1 An+1

− ε′ Bn(αneµ0 + γne−µ0) + ε′γn−1 Bn−1 + ε′αn+1 Bn+1

+ ε′Cn(δneµ0 + βne−µ0) − ε′δn−1Cn−1 − ε′βn+1Cn+1 = Xn (A.7)
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−εDn(αneµ0 + γne−µ0) + εγn−1 Dn−1 + εαn+1 Dn+1 − ε′Bn(δneµ0 + βne−µ0) + ε′δn−1 Bn−1

+ ε′βn+1 Bn+1 + ε′Cn(γne−µ0 + αneµ0) − ε′γn−1Cn−1 − ε′αn+1Cn+1 = Yn .

(A.8)

Here, Xn and Yn are given by

Xn =




(ε′ − ε)

4
√

2πεa
[−q1e

3
2 µ0 + q2e− 3

2 µ0 ] (n = 0)

(ε′ − ε)

4
√

2πεa
[q1e

1
2 µ0 − q2e− 1

2 µ0 ] (n = 1)

0 (n > 1)

(A.9)

Yn =




(ε′ − ε)

4
√

2πεa
[−q1e− 3

2 µ0 + q2e
3
2 µ0 ] (n = 0)

(ε′ − ε)

4
√

2πεa
[q1e− 1

2 µ0 − q2e
1
2 µ0 ] (n = 1)

0 (n > 1)

(A.10)

and αn , βn, γn, and δn by

αn = ne−(n+ 1
2 )µ0 γn = (n + 1)e−(n+ 1

2 )µ0

βn = ne(n+ 1
2 )µ0 δn = (n + 1)e(n+ 1

2 )µ0 .
(A.11)

Substituting equations (A.5) and (A.6) into (A.7) and (A.8), we obtain linear equations
for Bn and Cn :

(ε′ − ε)αn+1 Bn+1 − (ε + ε′)βn+1Cn+1 − (ε′ − ε)[γne−µ0 − αneµ0 ]Bn

+ [δn(εe−µ0 + ε′eµ0) + βn(εeµ0 + ε′e−µ0)]Cn

+ (ε′ − ε)γn−1 Bn−1 − (ε + ε′)δn−1Cn−1 = Xn (A.12)

−(ε′ − ε)αn+1Cn+1 + (ε + ε′)βn+1 Bn+1 + (ε′ − ε)[γne−µ0 + αneµ0 ]Cn

− [δn(εe−µ0 + ε′eµ0) + βn(εeµ0 + ε′e−µ0)]Bn

− (ε′ − ε)γn−1Cn−1 + (ε + ε′)δn−1 Bn−1 = Yn . (A.13)

When n = 0, the coefficients An−1, Bn−1, Cn−1, and Dn−1 in this set of equations are all
defined to be zero.

Equations (A.12) and (A.13) are solved using a standard linear equation solver, with the
series being truncated after a finite number of coefficients N ; N ≈ 10 is usually sufficient
to converge the induced polarization surface charge density. Equations (A.5) and (A.6) then
allow the remaining coefficients An and Dn to be calculated.

The induced polarization surface charge density is obtained from the discontinuity in the
electric field component Eµ at the surfaces µ = ±µ0 [7]:

h(1)(η) = E (2)
µ (−µ0) − E (1)

µ (−µ0) = − (cosh µ − cos η)

a

∂

∂µ
[ψ2 − ψ1]µ=−µ0 (A.14)

h(2)(η) = E (3)
µ (µ0) − E (2)

µ (µ0) = − (cosh µ − cos η)

a

∂

∂µ
[ψ3 − ψ2]µ=µ0 . (A.15)

Applying relations (A.14) and (A.15) to (A.2) and once more using the Legendre
polynomial recursion relation, one arrives at an induced charge density of the form given
in equations (18) and (19), where the coefficients Zn and Wn are given by
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Zn = − 1

2a
[(Bn − An)(γne−µ0 + αneµ0) − (Bn−1 − An−1)γn−1

− (Bn+1 − An+1)αn+1 − Cn(βne−µ0 + δneµ0) + Cn−1δn−1 + Cn+1βn+1] (A.16)

Wn = − 1

2a
[−(Dn − Cn)(αneµ0 + γne−µ0) + (Dn−1 − Cn−1)γn−1

+ (Dn+1 − Cn+1)αn+1 − Bn(βne−µ0 + δneµ0) + Bn−1δn−1 + Bn+1βn+1]. (A.17)

The resulting functions (18) and (19) are plotted in figure 3 and compared to the results of the
numerical procedure described in section 3.1.

Appendix B. Solution of the prolate spheroid problem

The external potential due to two point charges, q1 and q2, situated at z = ±a/2, as shown in
figure 8, is

ψe(ζ, η) = 1

2πaεε0

∞∑
n=0

(2n + 1)Pn(η)Qn(ζ )[(−1)nq1 + q2]. (B.1)

The surface polarization charge density h(s) is expanded as in (20). The Green function is
given by

G(r − r′) = 1

4π |r − r′| = 1

2πa

∞∑
n=0

(2n + 1)

n∑
m=0

εm im
[
(n − m)!

(n + m)!

]2

× cos (m(φ − φ′))Pm
n (η)Pm

n (η′)Pm
n (ζ<)Qm

n (ζ>) (B.2)

where Pm
n (x) and Qm

n (x) are associated Legendre functions of the first and second kinds. The
normal derivative to the surface ζ = ζ0 is given by [15]

∂

∂n
= 2

a

(
ζ 2 − 1

ζ 2 − η2

)1/2
∂

∂ζ

∣∣∣∣
ζ=ζ0

(B.3)

and integrations over that surface are performed using the relation [15]∫
d2s = a2

4
(ζ 2

0 − 1)1/2
∫ 1

−1
dη (ζ 2

0 − η2)1/2
∫ 2π

0
dφ. (B.4)

Substituting (B.1), (20), (B.2)–(B.4) into the functional (2) and exploiting the orthogonality
relations for trigonometric and Legendre functions, we obtain the result

I [h] =
∞∑

n=0

In(Cn) (B.5)

where
8In

(ζ 2
0 − 1)3/2a Qn(ζ0)

= [(−1)nq1 + q2]

× Cn
(κ − 1)

εε0
[(ζ 2

0 − 1)−1 − 3Pn(ζ0)Q′
n(ζ0) − P ′

n(ζ0)Qn(ζ0)]

+
a2π(ζ 2

0 − 1)1/2C2
n Pn(ζ0)

(2n + 1)
[(κ + 1)(ζ 2

0 − 1)−1

− (κ − 1)[Pn(ζ0)Q′
n(ζ0) + P ′

n(ζ0)Qn(ζ0)]]. (B.6)

Using the relation [14]

P ′
n(ζ0)Qn(ζ0) − Pn(ζ0)Q′

n(ζ0) = (ζ 2
0 − 1)−1 (B.7)
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and setting dI (n)

dCn
= 0, allows an expression for the coefficients Cn to be obtained:

Cn = (2n + 1)[(−1)nq1 + q2]Q′
n(ζ0)(1 − κ)

εε0a2π

√
ζ 2

0 − 1[κ Pn(ζ0)Q′
n(ζ0) − P ′

n(ζ0)Qn(ζ0)]
. (B.8)

It is easily verified that the total induced surface charge, given by Q = ε0a2πC0, is the correct
value, Q = (q1 + q2)(ε − ε′)/(εε′). The polarization energy is calculated using (14), leading
to the result

Vpol = −
∞∑

n=0

(ε′ − ε)Qn(ζ0)Q′
n(ζ0)(2n + 1)((−1)nq1 + q2)

2

4εε0πa[ε′Pn(ζ0)Q′
n(ζ0) − εP ′

n(ζ0)Qn(ζ0)]
. (B.9)
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